1.062.614

kiadvánnyal nyújtjuk Magyarország legnagyobb antikvár könyv-kínálatát

A kosaram
0
MÉG
5000 Ft
a(z) 5000Ft-os
szállítási
értékhatárig

Bevezetés az elméleti fizikába 1.

Szerző
Budapest
Kiadó: Akadémiai Kiadó
Kiadás helye: Budapest
Kiadás éve:
Kötés típusa: Vászon
Oldalszám: 643 oldal
Sorozatcím:
Kötetszám:
Nyelv: Magyar  
Méret: 24 cm x 18 cm
ISBN:
Megjegyzés: Fekete-fehér ábrákkal illusztrálva.
Értesítőt kérek a kiadóról

A beállítást mentettük,
naponta értesítjük a beérkező friss
kiadványokról
A beállítást mentettük,
naponta értesítjük a beérkező friss
kiadványokról

Fülszöveg

A könyv célkitűzése a modern elméleti fizika egész tárgykörének bemutatása. Az első kötet a klasszikus fizika fejezeteit, tehát a mechanikát, elektrodinamikát a hullámoptikával, a termodinamikát és a relativitáselméletet tartalmazza. E fejezetekben a könyv nagymértékben támaszkodik a magyar felsőoktatás kialakult módszertanára, és az egyetemeken tanított anyag mélyebb megértését és több oldalról való megvilágítását kívánja elérni.
A második kötet az anyag korpuszkuláris elméletével, a statisztikus mechanikával és a kvantumfizikával foglalkozik. E terület igen nagy kiterjedésű és állandóan újabb eredményekkel gazdagodik. A könyv anyaga úgy van kiválasztva, hogy a legfontosabb területek alapjait tárgyalja anélkül, hogy túlságosan a részletekbe hatolna.
A könyv szerzője, a kétszeres Kossuth-díjas Gombás Pál professzor, úttörő szerepet játszott a hazai elméleti fizikai kutatások megindításában. Munkássága az elméleti atomfizika, szilárdtestfizika és a magfizika területén nagy... Tovább

Fülszöveg

A könyv célkitűzése a modern elméleti fizika egész tárgykörének bemutatása. Az első kötet a klasszikus fizika fejezeteit, tehát a mechanikát, elektrodinamikát a hullámoptikával, a termodinamikát és a relativitáselméletet tartalmazza. E fejezetekben a könyv nagymértékben támaszkodik a magyar felsőoktatás kialakult módszertanára, és az egyetemeken tanított anyag mélyebb megértését és több oldalról való megvilágítását kívánja elérni.
A második kötet az anyag korpuszkuláris elméletével, a statisztikus mechanikával és a kvantumfizikával foglalkozik. E terület igen nagy kiterjedésű és állandóan újabb eredményekkel gazdagodik. A könyv anyaga úgy van kiválasztva, hogy a legfontosabb területek alapjait tárgyalja anélkül, hogy túlságosan a részletekbe hatolna.
A könyv szerzője, a kétszeres Kossuth-díjas Gombás Pál professzor, úttörő szerepet játszott a hazai elméleti fizikai kutatások megindításában. Munkássága az elméleti atomfizika, szilárdtestfizika és a magfizika területén nagy nemzetközi elismeréssel kísért eredményekkel gazdagította a tudományt. A könyv anyagának magvát a szerző egyetemi előadásai alkotják. Vissza

Tartalom

I. kötet
Előszó17
Bevezetés19
Mechanika
Bevezetés23
Az anyagi pont mechanikája
A vektortan alapjai26
A tömegpont kinematikája36
A mechanika alaptörvényei. Newton axiómái42
Mozgásegyenletek45
az erő idő és pálya szerinti integrálja. A munka46
A potenciál és az energiatétel49
Az erő momentuma és az impulzusmomentum közötti összefüggés55
Rugalmas erők. Egyszerű harmonikus mozgás56
A csillapított harmonikus mozgás61
A centárlis mozgás65
A Kepler-probléma67
A Newton-féle tömegvonzási törvény. Gravitációs erők71
A mesterséges holdak mozgása. Első és második kozmikus sebesség73
A bolygók mozgása76
Rakétamozgás. A Ciolkovszkij-egyenlet78
A kényszernek alávetett tömegpont mechanikája. Kényszererők79
A lejtőn való mozgás81
A matematikai síkinga83
a mozgásegyenletek mozgó koordinátarendszerben89
Pontrendszerek mechanikája
A tömegközéppont tétele97
Folytonos eloszlású rendszerek tömegközéppontja100
Az impulzusmomentum tétele101
Pontrendszerek összenergiája103
A mozgásegyenletek 10 integrálja105
Az anyag korpuszkuláris elmélete
Bevezetés13
A korpuszkulák létezésének kimutatásai. Kémiai alaptörvények14
Az elektrolízis Faraday-féle törvényei16
A Brown-féle mozgás16
Töltéssel bíró sugarak részeinek megszámlálása. Wilson kísérlete, szcintilláció, tűszámláló, héliumrészek megszámlálása17
Szilárd testek korpuszkuláris szerkezete19
A korpuszkulák elemei sajátságai21
Az elemi töltés meghatározása Millikan szerint21
A töltés és a tömeg viszonyának meghatározása korpuszkulák esetében23
Elektron, proton27
Az Alfa-részek szóródása28
Izotópia33
A Franck-Hertz kísérlet. Gerjesztett atomok energianívói36
Az atomok mágneses momentuma39
Atomok és molekulák elektromos momentuma44
A fotoelektromos effektus. A foton44
A Compton-effektus46
Anyaghullámok48
Néhány megjegyzése az elemek periodusos rendszeréhez49
Atommagok50
A radioaktivitás62
Magreakciók70
A szilárd testek korpuszkuláris elméletének alapjai73
A rácsenergia76
Rácsrezgések83
A rácsfrekvenciák meghatározása89
A háromdimenziós rácsok rezgései103
A mechanika elvei
Az egyensúly és mozgás feltételei106
Néhány egyszerű fogalom a variációszámítás köréből113
A Virtuális munka elve, mint variációs elv115
Az egyensúly stabilitásának feltétele115
A Hamilton-féle elv116
Általános koordináták120
Holonom és nem holonom kényszerek122
A Lagrange-féle másodfajú egyenletek123
A Hamilton-féle kanonikus egyenletek128
A legkisebb hatás elve133
Kanonikus transzformáció138
Ciklikus változók. A Hamilton-Jacobi féle differenciaegyenlet142
Merev test mechanikája
A merev test kinematikája148
A merev test mozgásegyenletei164
Merev test forgása egy rögzített tengely körül164
Párhuzamos tengelyekre vonatkozó tehetetlenségi momentumok közti összefüggés168
Rögzített tengely körül forgó merev test kinetikus energiája170
A tehetetlenségi momentum függése a forgástengely irányításától172
A tehetetlenségi ellipszoid173
Folytonos anyageloszlású testek tehetetlenségi és deviációs momentumai175
Tetszőleges tengelyre vonatkozó tehetetlenségi momentumok meghatározása176
A merev test egy rögzített pontja körüli mozgása. Az Euter-féle egyenletek176
A merev test pontkörüli mozgásának tárgyalása az Euler-féle egyenletek alapján, ha a külső erők momentuma eltűnik180
Az Euler-féle egyenletek integrálása, ha a külső erők momentuma eltűnik183
Az Euler-féle szögeknek mint az idő függvényeinek meghatározása, ha a külső erők momentuma eltűnik192
A merev test mozgása egy rögzített pontja körül, ha rá külső erő forgatómomentumot gyakorol194
A merev test sztatikájának alapfogalmai198
Deformálható testek mechanikája
Bevezetés203
Lineáris transzformációk203
A deformálható testek kinematikája221
A deformálható testek dinamikája229
A rugalmas testek mechanikája241
Síkhullámok izotróp rugalmas közegben252
Cseppfolyós és légnemű testek269
Cseppfolyós és légnemű testek egyensúlya270
Cseppfolyós és lgnemű testek mozgása274
A Bernoulli-féle egyenlet279
Örvénymentes áramlások281
Stacionárius, örvénymentes síkáramlás283
Relativitáselmélet
A Galile-féle relativitási elv301
Az Einstein-féle relativitási elv303
A Michelson-Morley kísérlet306
A Lorentz-transzformáció308
Relativisztikus kinematika311
Relativisztikus mozgásegyenletek320
Rakétamozgás322
Erők transzformációja324
A relativisztikus energia325
Négyesvektorok329
Az általános relativitás elmélet alapja339
Elektrodinamika
Bevezetés343
Vektoranalízis
Vektormezők, skaláris mezők344
Gradiens, potenciál345
Trajektóriák346
Ekvipotenciális felületek346
Vonalintegrál347
Felületi integrál349
Divergencia350
Gauss tétele352
Green tétele352
Stokes tétele354
A rotáció357
Felületes divergencia és felületi rotáció361
Az elektrosztatikus tér
Az elektromos térerősség és elektromos töltés364
Az elektromos töltés mint az erőfluxus forrása365
Mértékrendszerek368
Az elektrosztatikus terek jellemző tulajdonságai368
Az elektromosság elhelyezkedése vezetőkön370
Az elektrosztatika alapproblémája371
A pontszerű töltés potenciálja372
Különböző töltésrendszerek potenciálja374
Vezetők a térben. Gömbkondenzátor381
Az elektrosztatikus tér szigetelőkben. Dielektromos közegek382
Dielektrikumok polarizációja386
Az elektrosztatikus tér energiája390
Anizotrop dielektrikumok395
Stacionárius áramok
Definíciók397
Ohm törvénye397
Joule törvénye402
Kirchhoff törvényei403
A magnetosztatikus tér
Mágneses alapjelenségek és a mágnesség alaptörvényei406
Permanens mágnes mágneses tere410
Elektromos áram mágneses tere411
Zárt lineáris áram és a rajta átfektetett mágneses dipolréteg ekvivalenciája415
Áramok mágneses terének meghatározása, ha a környzeő közegben420
Az időben lassan változó kvázistacionárius terek
Bevezetés423
Az indukciós törvénye. Az elektromágneses tér második alapegyenlete423
Kölcsönös indukció425
Önindukció426
Egymással össze nem függő n lineáris áramkör mágneses energiája430
Váltóáramú körök431
Gyorsan váltakozó elektromágneses terek439
Az elektromágneses tér első alapegyenletei441
Az elektromágneses tér alapegyenletei443
A sugárvektor
Elektromágneses hullámok
Elektromágneses síkhullámok dielektrikumokban445
elliptikusan, cirkulárisan és lineárisan poláros hullámok452
Síkhullámok vezető közegben457
Síkhullámok visszaverődése és törése459
A teljes visszaverődés469
Síkhullámok összetétele472
Állóhullámok474
A hullámcsoport. Csoportsebesség475
Gömbhullámok478
A Huyghens-féle elv. Kirchhoff formulája493
Az elhajlásjelenségek felosztása498
Egyszerű harmonikus rezgések összetétele a komplex számsíkon502
Fraunhofer-féle elhajlásjelenségek egyszerű résen, vonalas, kereszt- és térbeli rácson504
Az elektrodinamika alapegyenleteinek egységes levezetése és az ezekből levont általános következtetések
Maxwell-féle egyenletek és a határfeltételek egységes származtatása517
Elektromágneses jelenségek osztályozása és egyes speciális terek alapegyenleteinek levezetése az általános alapegyenletekből519
Elektromágneses potenciálok521
Retardált potenciálok525
A Maxwell-féle feszültségek528
Elektromágneses impulzus531
A sugárzás nyomása532
A harmadik axióma az elektromágneses térben534
Relativisztikus elektrodinamika
Az elektrodinamika alapegyenleteinek Lorentz-invarianciája535
Az elektromos töltés és az elektromágneses térerősségek transzformációs szabályai539
Négyestenzorok543
Doppler-effektus és aberráció554
Termodinamika
Bevezetés559
A termodinamika főtételei
A hőmérséklet fogalma és a hőmérsékleti skála591
Termodinamikai rendszerek. Állapotjelzők és állapotfüggvények563
Az ideális gáz állapotegyenlete567
A termodinamika első főtétele569
Hőkapacitás573
Adiabatikus folyamatok576
A termodinamika második főtétele577
A Carnot-féle körfolyamat578
Az entrópia587
A második főtétel matematikai megfogalmazása590
A termodinamika harmadik főtétele592
Az állapotegyenletek integrálhatósága
Az állapotegyenletek integrálhatóságának feltétele. Az entrópia meghatározása594
Az ideális gáz entrópiája596
A van der Waals-féle állapotegyenlet599
Kondenzáció602
Mágneses anyagok termikus viselkedése605
A szupravezető átmenet termodinamikája610
Termodinamikai egyensúly
Az egyensúly feltételei615
Homogén rendszerek617
Az ideális gáz termodinamikája624
Kémiai folyamatok és kémiai egyensúly632
Heterogén rendszerek636
A Clausius-Clapeyron egyenlet640
Megvásárolható példányok

Nincs megvásárolható példány
A könyv összes megrendelhető példánya elfogyott. Ha kívánja, előjegyezheti a könyvet, és amint a könyv egy újabb példánya elérhető lesz, értesítjük.

Előjegyzem